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Abstract

We study the problem of constructing succinct non-interactive arguments (SNARGs), an
important tool in cryptography for delegating computations. In recent years, several results
related to SNARGs have appeared due to the progress in provably instantiating the Fiat-Shamir
transformation. In this note, we show that some techniques used in constructing SNARGs can
be improved to work in more general settings, which may be useful in constructing better
SNARGs or in some other applications in cryptography:.

1 Introduction

Succinct non-interactive arguments (SNARGs) are protocols for generating a short certificate for
the correctness of a long computation. Such protocols are closely related to the problem of del-
egating computation: a client delegates the computation task to a untrusted server with more
computational resources, and receives the result of the computation together with a short certifi-
cate that allows much faster verification than computing again. Efforts in constructing SNARGs
are mainly motivated by the real-world applications like cloud services or block chains.

In this note, we focus on SNARGs for the complexity class P shown in [C]]21b], which is based
on the standard LWE assumption (see section 2.2.1). The main components of [C]J]21b] are a some-
where extractable (SE) commitment with local opening (section 3), a PCP (section 2.3), and a hash
function for Fiat-Shamir (section 2.5). In the following sections, we study the constructions of
these components respectively and try to extend them to more general settings.

1.1 Ouwur results

Our main focus is to construct SNARGs based on assumptions different from or weaker than
known results, e.g.,, SNARGs based on only (subexponential) DDH. Unfortunately, we only get
some partial results in this direction. In section 3, we show that SE commitment is known from
many standard assumptions, and present a relaxed version of this commitment scheme; in section
4, we show a different method of instantiating Fiat-Shamir, allowing us to instantiate Fiat-Shamir
for a broader class of interactive protocols; then in section 5, we define a special PCP that is still
not known to exist, which is the main barrier to get better results.
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1.2 Related works

In addition to [CJJ21b], some other recent works also showed constructions of SNARGs based
on different standard cryptographic assumptions, e.g., [HJKS22; CJJ21a] based on discrete Diffie-
Hellman (DDH) and quadratic residue (QR), and [WW22] based on groups with bilinear maps.
Note that most of the constructions are done by first constructing a (interactive) succinct argument,
and then applying Fiat-Shamir securely on the argument, while an exception is [WW22], which
constructs a non-interactive protocol directly without Fiat-Shamir.

More recently, [Kal22] showed a bootstrapping result for SNARGs, allowing us to get SNARGs
with optimal communication complexity from any SNARG with non-trivial communication com-
plexity. This solves the problem that SNARGs from [HJKS22; CJJ21a; WW22] can only achieve a
weaker level of succinctness than [C]]21b].

2 Preliminaries

2.1 Notations

For any positive integer n, we define [n] := {1,2,...,n}. For any vector x of length 1, for any
i € [n], we define x; to be its i-th element; also for any S C [n], we define xg := {x; }ics.

2.2 Basic cryptographic assumptions

In this section, we present the basic cryptographic assumptions that we will use.

2.21 The Learning with Errors assumption

The learning with errors (LWE) problem, first introduced in [Reg05], is an extremely versatile basis
for constructing cryptographic tools, and is believed to be hard even against quantum computers.

Definition 2.1 (The Learning with Errors (LWE) assumption). Let x be an arbitrary error distri-
bution over Z. For any positive integer n, g, and m = poly(n), the Learning with Errors assump-
tion states that for any non-uniform PPT adversary D, there exists a negligible function v(-) such
that

Pr [D(A,As+e)=1]— Pr [D(A,y) =1]| <v(n).
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In the standard LWE assumption, x is chosen to be the discrete Gaussian distribution with
parameter r = 2/n. &

2.2.2 Number theoretical assumptions

We first state the DDH assumption [DH76], which is defined with respect to groups. We say G is
a (prime-order) group generator if it is a PPT algorithm that takes as input the security parameter
1%, outputs (G, p,g) where G is the description of a multiplication cyclic group, p = |G| is a prime
number, and g is a generator of G. The DDH assumption is the following:



Definition 2.2 (The Decisional Diffie-Hellman (DDH) assumption). We say a group generator G
satisfies the Decisional Diffie-Hellman assumption if for any non-uniform PPT adversary D, there
exists a negligible function v(-) such that

Pr [D(1Y,G,p88%8%.¢Y)=1~- Pr [D1YG,p 58" 8" &) =1] <v(A).
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Then we state the QR assumption [GM82]. We say N is a Blum integer if N = p - g where p, g
are prime integers satisfying p = q = 3 (mod4). Let Z}; be the multiplication group of integers
from1,2,..., N that are co-prime with N. Then we define ]y as the subgroup of Z}; with Jacobi
symbol +1, and define QR as the subgroup of Z}; consisting of all the quadratic residues. Note
that if N is a Blum integer, then Jn can be written as {£1} x QRy. Then the QR assumption is as
follows.

Definition 2.3 (The Quadratic Residuosity (QR) assumption). Let N < 2 be a uniformly sam-
pled Blum integer. The Quadratic Residuosity (QR) Assumption states that for any non-uniform
PPT adversary D, there exists a negligible function v(-) such that

Pr [D(1,N,a) =1]— Pr [D(1*,N,a) =1]| < v(A).

a<Jn a+—QRy
%

Note that the above assumptions can be strengthened to sub-exponential assumptions. The
corresponding sub-exponential assumptions additionally require that there exists a constant e €
(0,1) such that the function v(A) is bounded by 2=** (stricter than v(-) being negligible).

2.3 Probabilistic Checkable Proofs

A probabilistic checkable proof (PCPs, see [AS98; ALMSS98]) is a proof system for a language that
allows very fast verification. More precisely, the verifier can check the correctness by randomly
probing very few bits of the proof. The definition of PCP is shown below.

Definition 2.4 (Probabilistic checkable proof). For a language L, a probabilistic checkable proof
for L is a randomized algorithm V with the syntax (I, D) < V(x;r), where x is an instance, r is the
random coins, [ is a set of indices of size |I| = g, and D : {0,1}7 — {0,1} is the decision circuit.
Furthermore, V should have the following properties:

* For any x € L, there exists a proof string that make the verifier accept, i.e.,

3 P D =1 =1.
T (I,D)el{/(x;r)[ (NI) ]

e Forany x ¢ L, any proof string can only make the verifier accept with very low probability,
ie.,
vV Pr D(my) =1] <e.
(I,D)eV(x,'r)[ (1) I<
In addition, g is called the query complexity, | 77| is the proof size, ¢ is the soundness error, and
the size of the circuit D is the verification time. &



2.4 The Fiat-Shamir transformation

The Fiat-Shamir transformation [FS86] is a general method for eliminating interaction in public-
coin interactive proofs (or arguments). Note that a proof system means that the prover is com-
putationally unbounded, while an argument system means that the prover is comoputationally
bounded (e.g., runs in polynomial time). In general, the Fiat-Shamir transformation can be used
to convert any public-coin interactive proof (or argument) into a non-interactive argument. The
transformation itself is quite simple: given a public-coin interactive proof protocol (P, V), the new
prover P’ and the new verifier V’ first agree on a hash function & which is randomly chosen from a
hash function family #H. Then the prover P’ just runs the protocol by emulating P. Every time the
protocol requires a verifier message (which is some random coins), the prover P’ just replace the
message with the hash of the transcript of the protocol so far. As a result, the verifier V' does not
need to send anything (so (P’, V') becomes non-interactive), and V' only needs to check that the
prover message is an accepting transcript for V and the “verifier messages” are indeed the hash
value. Figure 1 below is an illustration of the transformation.
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Figure 1: the Fiat-Shamir transformation, applied on an interactive proof proving x € L

2.5 Correlation intractable hash functions

Correlation intractable (Cl) hash functions are crucial for Fiat-Shamir. Together with round-by-
round soundness (see section 4), they suffice to securely instantiate Fiat-Shamir for proofs. The
formal definition is shown below.

Definition 2.5 (Correlation intractable hash family [CGHO04]). A hash family H = {#) },en has
the following two algorithms:

o K« ’H.Gen(l)‘): Gen is a PPT algorithm that on input the security parameter 1%, outputs a
hash key K;

* y < H.Hash(K, x): Hash is a deterministic polynomial-time algorithm that on input the hash
key K € Gen(1") and the input x € {0,1}""), outputs the hash value y € {0,1}*.

We say H is correlation intractable for a function family F = F) } \ e if the following holds:

e Forany A € N, any f € F,, and any K € H.Gen(1"), the functions H.Hash(K,-) and f()
have the same domain and co-domain;



¢ For any non-uniform PPT adversary A, for any f € F,, there exists a negligible function
v(-) such that

Pr  [H.Hash(K,x) = f(x)] <v(A).
K+H.Gen(11)
x4+ A(K)

The results of Cl hash family mainly used in constructing SNARGs are the following:

¢ Cl for P assuming LWE [PS19];
e Clfor TCY assuming subexponential DDH [J]21];

¢ Cl for efficiently verifiable product relations assuming LWE [HLR21].

3 Somewhere extractable commitment with local opening

In this section, we present the definition and constructions of somewhere extractable commitment
with local opening, which is a crucial tool for constructing SNARGs. The constructions are known
based on many standard assumptions by borrowing some works on private information retrieval.

Definition 3.1 (Somewhere extractable (SE) commitment, modified based on [C]J]J21b]). A some-
where extractable commitment scheme is a tuple of algorithms (Gen, TGen, Com, Ext) with the follow-
ing syntax:

* K «+ Gen(1*,1V). The normal mode key generator Gen on input the security parameter A
and the message length N, outputs a commitment key K that is uniformly random over the
key space.

e (K*,td) < TGen(1*,1N,i). The trapdoor mode key generator TGen on input the security
parameter A, the message length N, and the position of extraction i € [N], outputs a com-
mitment key K* together with an extraction trapdoor td.

* ¢ < Com(K, m). The commitment is a deterministic algorithm Com that on input the commit-
ment key K, the message m € {0,1}", outputs a commitment c.

® z < Ext(td,c). The extraction algorithm Ext on input a trapdoor td and a commitment c,
outputs a bit z.

The above commitment scheme should have the following properties:

* Succinct commitment. The commitment key K (generated by either Gen or TGen) and the
commitment ¢ should have length bounded by poly(A,log N).

e Key indistinguishability. For any i € [N], for any non-uniform PPT adversary D, there

exists a negligible function v(-) such that

Pr [D(K)=1—-  Pr  [DK)=1]|<v(p).

K< Gen(1%,1N) K*<TGen(1%,1N,i)



* Extraction correctness. For any message m € {0,1}Y, any i € [N], there exists a negligible
function v(-) such that

P Ext(td, Com(K*, m)) = m;] > 1 — v(A).
(K*,td)eTcl(;n(luN,i)[ xt( om(K*,m)) = m;] > v(A)

We say the extraction correctness is perfect if v(-) = 0. &

Note that we can always open the commitment by directly revealing the message m and letting
the verifier re-compute the commitment. However, in many applications, we need to locally open
a single element of m in a more efficient way. So, we have the following definition of local opening:

Definition 3.2 (Somewhere extractable commitment with local opening). A somewhere extractable
commitment with local opening is a tuple of algorithms (Gen, TGen, Com, Open, Verify, Ext) such that
(Gen, TGen, Com, Ext) is a SE commitment, and the extra Open and Verify have the following syn-
tax:

e 77 < Open(K, m,i). On input the commitment key K, the message m € {0,1}", and an index
i € [N], the deterministic algorithm Open generates an opening 7t to m;.

* 0/1 < Verify(K,c,i,z, ). The verification algorithm Verify gets as input the commitment
key K, the commitment ¢, the index i € [N] to open, the value z claimed to be m;, and an
opening 7t for it. Then it decides to either accept (output 1) or reject (output 0) the opening.

Furthermore, the commitment scheme should also have the following properties:

* Succinct opening. The length of the opening 7t and the running time of Verify should be
bounded by poly(A,log N).

* Opening completeness. For any commitment key K, any message m € {0,1}", and any
index i € [N], we have

Verify(K,Com(K, m),i, m;,Open(K, m,i)) = 1.

* Opening soundness. For any extraction index i € [N], there exists a negligible function v(+)
such that

Pr [3c,z, 7t : Verify(K*, c,i,z, 1) = 1 ANExt(td, c) # z] < v(A).
(K* td) +TGen(11,1V,)

&

Remark. The definition here is a bit different from the definition in [CJ]21b]. The differences and
why our definition suffices are as follows:

1. Our commitment is deterministic given the commitment key. Note that [C]]21b] fixes the
randomness when using the commitment, so we directly define a deterministic one.

2. We only define extraction w.r.t. a single index instead of a subset of indices. In fact, a SE
commitment scheme w.r.t a subset S can be constructed easily by using |S| different SE com-
mitment schemes, each constructed w.r.t one of the extraction index in S (also, [C]J]J21b] has
another step of randomly shuffling the S commitments to achieve another required property
called no-signaling). Therefore, our definition suffices.
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3. In extraction correctness (and hence also in opening soundness), we allow a negligible error
probability, while [C]]21b] requires perfect correctness. One can easily find that extraction
is only used in the proof of soundness, and it never appears in the real protocol. Therefore,
the negligible error probability incurs only an extra negligible soundness error, since the
soundness error can be bounded in the following way: for any wrong claim, the probability
that the protocol accepts (i.e., the soundness error) is

Pr[protocol accepts| < Pr[protocol accepts | extraction works|] + Pr[extraction fails].

This problem will be discussed in detail when we construct the commitments (see section
3.2 and 3.3).

3.1 Private information retrieval

In this subsection, we define private information retrieval (PIR), which is closely related to SE
commitment but is much more well-studied. The formal definition is shown below.

Definition 3.3 (Private information retrieval (PIR), modified based on [D6t+19]). A private infor-
mation retrieval is a two-message protocol between a sender and a receiver. The sender has a long
vector m € {0,1}", while the receiver wants to retrieve m;. The protocol consists of a triple of
PPT algorithms I'T = (I1;, Iy, I'T3) with the following syntax:

e (st,msgl) < IT1;(1%,1). I1; takes as input the security parameter and the index i, and outputs
a receiver message msgl together with a receiver state st.

* msg2 < IIy(msgl,m). I, takes as input the receiver message msgl and the vector m, and
outputs the sender message msg2.

e z < II3(st,msg2). I3 takes as input the state st and the sender message msg2, and outputs
the receiver output z.

We say the protocol is a PIR if the following properties holds:

e Correctness: I1is correct if for allm € {0,1}"N and i € [N], there exists a negligible function
v(-) such that

Pr [z #m;] <v(A).
(st,msg1) Iy (1%,)
msg2+ 11 (msgl,m)
z¢I13(st,msg2)

* Receiver privacy: For any i,j € [N], for any non-uniform PPT adversary D, there exists a
negligible function v(-) such that

Pr [D(1",msg1) = 1] — Pr [D(1",msg1) = 1]| < v(A).

(st,msgl)<+I1; (14,i) (stmsgl)«ITy (1))

By taking a closer look at the definition, we have the following result:

Proposition 3.4. The following two things are equivalent:



1. PIR with poly(A,log N) communication complexity;

2. SE commitment. &

Proof. The proof is straightforward. In the definition of PIR and SE commitment, we take I1; as
TGen, I'T; as Com, and I'l3 as Ext. Then the correctness of PIR is the same as the extraction correctness
of SE commitment, receiver privacy is the same as key indistinguishability, and poly(A,log N)
communication complexity is the same as the commitment being succinct. O

Due to the equivalence, we can get SE commitments directly from the constructions of PIR,
and then check whether they have local opening. We check the constructions in the following
subsections.

3.2 Constructions based on LWE or QR

In order to construct SE commitments with local opening, we borrow the results from [Do6t+19],
which presents constructions of PIR based on LWE, DDH, or QR. Due to the equivalence, we can
directly obtain SE commitments from these assumptions. Furthermore, all the constructions in
[Do6t+19] have a special Merkle tree structure, allowing us to locally open a single element. In
general, the opening algorithm simply reveals the path from the root to the position to open on
the tree structure, together with the sibling of each node on the path. Then the verifier just checks
that each node on the path is correct.

The completeness of such an opening is straightforward. However, the soundness might be
problematic due to the different settings of PIR and commitments. When we use the commitment
in a protocol, we need to consider a malicious prover: it may try to forge a commitment after
receiving the commitment key. Therefore, the definition of opening soundness requires that with
high probability over a randomly chosen key, even an unbounded prover cannot find a commit-
ment with a wrong local opening (like adaptive security). However, in a PIR, the correctness only
requires that for any message to commit, the extraction can work with high probability over a
randomly chosen key (like non-adaptive security). As a result, a cheating prover may be able to
find a commitment given the commitment key and make the extraction fail.

Note that the constructions based on LWE or QR have perfect extraction correctness, so we at
least have the following theorem:

Theorem 3.5. If either LWE or QR holds, we have SE commitments with local opening. &

For the construction based on DDH, we show in the next subsection that it may satisfy a relaxed
property that suffices for constructing SNARGs.

3.3 Possible weaker construction based on DDH

There is an observation of the DDH-based PIR from [Do6t+19]: when extracting the commitment,
we can efficiently check whether the extraction fails or not. It means we can either perfectly extract
the correct value or find that the extraction does not work. Due to this property, we can allow
the extraction algorithm to output a special symbol representing “fail”, and define the following
relaxed version of soundness:



Definition 3.6 (Weak opening soundness). Consider a commitment scheme (Gen, TGen, Com, Open,
Verify, Ext). We say it is a SE commitment with weak local opening if it satisfies all other definitions
of SE commitment with local opening, except that the definition of opening soundness is relaxed
to weak opening soundness: the extraction algorithm Ext is allowed to output a special symbol L
meaning the extraction fails, and the following two properties are satisfied:

e For any non-uniform PPT adversary A, there exists a negligible function y(-) such that

Pr Ext td,C :J_ S A .
(K*,td)<—TGen(1A,1N,i)[ % ( ) ] .“( )
c+A(K*)

e There exists a negligible function v(-) such that

Pr [3c,z, 7w : Verify(K¥, c,i,z, 1) = 1 AExt(td, c) # z AExt(td,c) #L] < v(A).
(K* td) +TGen(11,1V,)

¢

In fact, the error probability v(A) in the second inequality can be 0. Therefore, we only need to
bound the probability of finding a “non-extractable” commitment given a random key. However,
this problem is related to too many details of the DDH-based PIR, and is still not very clear. Also,
there should be simpler proofs/constructions, or even constructions with standard soundness. So,
we just skip the complicated analysis here.

4 Fiat-Shamir compatible protocols

In this section, we relax the definition of Fiat-Shamir compatible protocols in order to deal with the
faulted extraction in SE commitment. The idea is that for an interactive argument that the prover
is computationally bounded, a small fraction of prover messages that are hard for the prover to
find can be ignored.

Definition 4.1 (Relaxed round by round soundness, modified based on [Can+19]). LetII = (P, V)
be an interactive argument under the common reference string model for a language L, and crs be
the common reference string. We say I1 is relaxed round by round sound if there exists a determin-
istic function State (can be inefficient) that takes as input an instance x € {0,1}* and a prefix of

the transcript of the protocol 7, and outputs one of 0/1/ L (representing “reject”, “accept”, and
“abort” respectively). State should have the following properties:

* Let ¢ be the empty transcript prefix. For any x € L, we have State(x,¢) = 1;forany x ¢ L,
we have State(x, ¢) = 0.

e For any instance x, any transcript prefix T = (crs, a1, B1, a2, B2, ..., &i—1,Bi—1) such that
State(x,7) = 0, and any prover message «; such that State(x, T|a;) #.L, there exists a
negligible function v(-) such that

P Stat , (B =1] <v(A).
L Pe [state(nTla|p) = 1] < v()

¢ For any instance x, any complete protocol transcript 7, we have

State(x,7) =0= V(x,T) =0.



e For any instance x and transcript prefix 7, if any prefix 7’ of 7 satisfies State(x, 7’) =L, then
we must have State(x, T) =.L.

e For any instance x ¢ L, any non-uniform PPT adversary A, there exists a negligible function
v(-) such that

Pr [State(x,crs|t) =L1] < v(A).
crs«—{0,1}*
T A(x,crs)

¢

Similar to a standard RBR-sound protocol, we can also define the bad relation B for an inter-
active argument I'T = (P, V') with relaxed RBR soundness. B is defined as

B = {((x,T|«),B) : State(x,T) = 0 A State(x, T|a|p) = 1}.

We can show that the relaxed version of RBR soundness can also work with correlation in-
tractability to securely instantiate Fiat-Shamir.

Theorem 4.2 (FS-compatible interactive arguments). Let IT = (P, V) be an interactive argument
for L with relaxed round-by-round soundness, and let H be a hash function family that is correla-
tion intractable for the bad relation B of IT. Then the new protocol IT" = (P’, V') defined below is
a non-interactive argument for L with negligible soundness error.

e Common reference string crs’: the new crs’ has the form crs’ = (crs, h), where crs is the
common reference string of I, and / < H is the description of a hash function from the
hash family H.

* Prover P": P’ emulates P and replaces each message f; from V with B} = h(x, crs|ai|az]| - - - ;).
Then it sends the transcript to V.

e Verifier V': V' checks that the transcript is consistent with & and V accepts the transcript.

Proof. If there exists a non-uniform PPT cheating prover P* for the new protocol IT, it means
there exists an instance x ¢ L and an inverse-polynomial function p(-) such that

P V'(x,h, ) =1] > p(A).
LB VT =102 p()
heH
T4 P*(x,crs,h)

Now we consider the state function. The state can only be “accept” or “abort” if the verifier
accepts. Therefore,

Pr  [State(x,T)=1]+ Pr  [State(x,T) =1] > p(A)

crs«{0,1}* crs<—{0,1}*
hH h«H
T DP*(x,crs,h) T<P*(x,crs,h)
= Pr  [State(x,T) =1] > p(A) — negl(A).
crs«{0,1}*

hH
T DP*(x,crs,h)

This step is because the probability of aborting must be negligible according to the definition
of relaxed RBR soundness. Now we have been back to the situation without aborting, and the
proof using standard RBR soundness and correlation intractability can just go through. ]

10



5 Towards better SNARGs for P

Based on the results in previous sections, we want to weaken the assumptions required for SNARGs,
e.g., SNARGs based on only (subexponential) DDH. However, there are still some problems related
to PCP. In this section, we present the ideas and problems of constructing better SNARGs with
techniques in [C]]21b].

5.1 Weak local opening and Fiat-Shamir

We first show that if we use SE commitment with weak local opening in the protocol in [C]]21b],
relaxed RBR soundness can be satisfied. The original protocol proves somewhere statistical sound-
ness by switching the commitment key to trapdoor mode, and extracting the commitment to de-
fine the state function. With weak local opening, we first let the state function output “abort”
if the prover sends a commitment that cannot be extracted by the trapdoor, and then define the
state function in the same way as the original protocol. Due to the definition of weak opening
soundness, such a commitment is hard to find, and thus the relaxed RBR soundness is satisfied.

5.2 The need of better PCPs

Note that in [C]]21b], the construction requires the result of Cl for fancier relations from [HLR21].
However, such kind of results are only known from LWE. The major technique used in [HLR21] is
list-recoverable codes, which are roughly used to derandomize the protocol and then apply the Cl
for P result. Although we also have Cl for TCY assuming (sub-exponential) DDH [J]21], we still do
not know list-recoverable codes that can meet the TC’-computable requirement.

In order to have SNARGs from assumptions other than LWE, we need to either have similar
results from other assumptions (which are still unknown), or avoid such kind of relations by
constructing better PCPs. For example, to get a DDH-based SNARG using the same technique,
we need a PCP with negl(A) soundness error with the following properties:

* Few bad randomness. For any x ¢ L, any PCP proof 7, the number of bad randomness is
polynomially bonded, i.e., |[{r : (I, D) <— V(x;r),D(m;) = 1}| < poly(A).

e Efficient bad function. There exists an efficient algorithm in TC® such that given the PCP
proof 7t for x ¢ L, the algorithm samples a bad randomness r of the PCP query that leads to
accept.

Such a PCP is still unknown. To make the problem easier, we can try to relax some proper-
ties of PCPs. An observation of [C]]J21b] is that the requirements on the query complexity and
verification time is not as strict as traditional PCPs: we only need the verification circuit to be
a little bit smaller than the original NP statement, but traditional PCPs usually shrink a lot, say
poly(log |C|, A). Therefore, here we can relax the verification time (and thus the query complexity)
to be smaller than only a non-trivial bound, say, |C| - poly(A) for a small enough constant ¢.

Note that there are boosting techniques for PCP to reduce the query complexity, like compos-
ing PCPs (see, e.g., [AS98]). However, composition of PCPs has additional requirements, e.g.,
robustness and proof of proximity. Also, the soundness error after composing two PCPs is the
sum of the two original PCPs. Since we may not be able to boost the query complexity for free,
relaxing the query complexity can make sense.

11



6 Conclusion

This work is only a partial result of SNARGs based solely on (subexponential) DDH. We sum-
marized some results from PIR showing that SE commitment (with local opening) is known from
several standard cryptographic assumptions. Also, we tried to relax the requirement of local open-
ing, and presented a new relaxed version of RBR soundness. However, there still remains a barrier
of constructing either better PCPs or DDH-based correlation-intractable hash functions for fancier
relations. Also, the DDH-based commitment requires further examination. In addition to solving
this problem, we can also try to apply the relaxed RBR soundness to other applications.
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