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Abstract
In this survey, we focus on some complexity-theoretic results
related to equilibrium, an important concept in game theory.
We summarize some results showing that it is computation-
ally intractable to find an equilibrium in general. In addition,
we also present some methods to deal with the intractability.

Introduction
Equilibrium concepts play a central role in game theory.
When we consider a game or some real-world situations
that can be formalized as a game, we usually want to find
a stable state that will stay unchanged once it is reached.
Such kind of states are usually called equilibria, for exam-
ple, most famously the Nash equilibrium, or the subgame-
perfect equilibrium in a extensive form game, a Bayesian
Nash equilibrium in a game with incomplete information,
etc. Equilibrium is an important concept since it can be re-
garded as a “solution” of the game, or as a prediction of
the most likely outcomes of a long-rum system. However,
whether we can find or reach an equilibrium in a reasonable
amount of time is a problem, or in other words, equilibria
may be computationally intractable. The hardness of find-
ing an equilibrium is an interesting area for research since
we still do not have algorithms for equilibrium computation
in general - although we already have a proof for its exis-
tence. Also, if finding an equilibrium is generally hard, it
is not reasonable to assume that all players can converge to
an equilibrium with limited amount of effort, and thus the
concept of equilibrium loses its credibility as a prediction of
outcomes.

In the following sections, we present some complexity
results for computing equilibria (mainly showing that they
may be hard to compute). After that, we show some tech-
niques that can bypass or (somewhat) overcome the compu-
tational intractability of computing equilibria.

Intractability results for equilibria
It has been proved that a mixed-strategy Nash equilibrium
always exists in a normal form game (Nash et al. 1950).
But the proof of this result is non-constructive, and can-
not imply an efficient algorithm for finding an equilibrium.
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The main hardness result of Nash equilibrium is its PPAD-
completeness. In this section we summarizes some intuitions
behind these results and why they show the hardness of this
problem.

Why not NP-completeness
NP-completeness is the standard complexity theoretic ap-
proach to prove that a problem is computationally in-
tractable. However, NP does not seem to be the right com-
plexity class to capture Nash equilibrium.

Since our goal is to find a Nash equilibrium and it is not a
decision problem, we need a generalized “function” version
of NP, usually called FNP. The complexity class FNP con-
sists of problems of the form “given a relation R and input
x, output any y such that (x, y) ∈ R, or output no if such y
does not exists”. We require that the relation R ⊂ Σ∗ × Σ∗

must satisfy the following conditions:
1. polynomial-time verifiable: for any pair (x, y), we can

check whether (x, y) ∈ R in polynomial time.
2. polynomially bounded: there exists a polynomial p such

that |y| ≤ p(|x|) for any (x, y) ∈ R.
Also we can define FP as the subset of FNP that is poly-

time solvable, which is a generalized version of P. Of course
Nash equilibrium is in FNP, and is not known to be in FP.
FNP and FP are just analogous to NP and P : we can prove
that FNP = FP if and only if P = NP.

We also have a function version of NP ∩ coNP called
TFNP (“T” for “total”). This class is a subset of FNP with
an additional constraint:
• For any x, there always exists a y such that (x, y) ∈ R

(i.e., the relation R is a total relation).
Obviously, FP ⊆ TFNP ⊆ FNP, but neither inclusion is

known to be strict, just like P ⊆ NP ∩ coNP ⊆ NP. Note
that Nash’s proof guarantees that every normal form game
has a MSNE, and thus the Nash equilibrium problem is in
TFNP. The following results shows an evidence that Nash
equilibrium is not FNP-complete:
Lemma 1 If a FNP-complete problem is in TFNP, then
NP = coNP (Megiddo and Papadimitriou 1991).
NP = coNP implies that PH collapses to the first level.

Since PH does not collapse is a standard conjecture in com-
plexity theory, we believe that Nash equilibrium does not



have NP-completeness. However, we will present that a sub-
set of TFNP called PPAD can capture the hardness of Nash
equilibrium.

The class PPAD
To capture the hardness of finding Nash equilibria, the main
idea is to check the non-constructive step in Nash’s existence
proof, and check whether it is hard to simulate computation-
ally. Recall the proof of existence we talked about in class.
For each strategy profile, we define the best response cor-
respondence and directly apply Kakutani’s fixed point theo-
rem to show that a MSNE (i.e., a fixed point) always exists.
The non-constructive step is Kakutani’s fixed point theorem,
which is a generalized version of Brouwer’s theorem, and
further more, Brouwer’s theorem can be proved based on
Sperner’s lemma. So let’s start from Sperner’s lemma. Here
we ignore the description of this lemma since we have talked
about it in class, and exactly the same settings are used in the
rest of this section. Recall the proof of Sperner’s lemma, in
which we abstract a graph based on the coloring of vertices,
and then apply the following lemma to the graph to prove
the result:

Lemma 2 (Parity lemma) (Undirected) Any finite graph
has an even number of odd-degree nodes.

(Directed) If a directed graph has an unbalanced node
(i.e., in-degree not equal to out-degree), then it must have
another one.

The parity lemma can be proved by a simple counting.
Based on the lemma and some “starting points” with odd de-
gree on the three edges, it is guaranteed that a trichromatic
triangle always exists. Now going back to the complexity
class FNP: for a given relation R with its corresponding
problem in FNP, if we want to show that this problem is
in TFNP, we need to show that R is a total relation. Notice
that the above parity lemma is just used to give a proof of
existence and can further show the totality of R, we define a
subclass of TFNP by unifying the way of proving totality as
parity arguments.

Definition 3 (Polynomial Parity Argument) A problem P
is in PPA if and only if it can be defined in the form “on in-
put x, given a standard leaf of G(x), output another leaf”,
where the graph G(x) is defined on a configuration set
C(x) ⊆ Σpoly(|x|) with edges defined in terms of a poly-
time algorithm Mx(c) that on input c ∈ C(x), output all the
neighbours of c on the graph (at most two) (Papadimitriou
1994).

Intuitively, PPA is just the subclass of TFNP that are
guaranteed to have a solution because of the parity lemma.
Remark that there is something worth noticing in the defini-
tion:

1. Graphs with degree at most 2 are just enough: if we allow
poly-bounded number of inputs as the settings in the par-
ity lemma, it is just an equivalent definition, since we can
decompose the graph into a new graph of degree at most 2
such that previous odd-degree nodes coincide with leaves
in the new graph.

2. The graph may have exponential size: this is the main
reason that such problems may be hard. For example,
in Sperner’s lemma, we can define a triangle with edge
length 2n, and on a given coordinate (x, y, z) (each of x,
y, z uses n bits), output the color on that point in polyno-
mial time (i.e., a succinct description of colors).

By doing the same thing on a directed graph and trying
to find a source or a sink, we can similarly define PPAD as
follows:

Definition 4 (Polynomial Parity Argument, Directed)
A problem in PPAD is defined by modifying the definition
of PPA such that Mx(c) outputs an ordered pair of nodes
(c1, c2) denoting two directed edges (c1, c) and (c, c2)
respectively. Then the problem is that given a node that is
either a source or a sink (indegree+outdegreee=1 ), try to
find another source or sink.

This definition forms a trivially complete problem of
PPAD. From a graph-theoretic perspective, the problem is
to find another end of a line in the directed graph. So this
PPAD-complete problem is called END OF THE LINE.

By adapting the theorems into search problems, we
can get some problems like SPERNER,BROUWER and
KAKUTANI that are in PPAD. (problems like BROUWER
has some kind of approximation since a continuous func-
tion in the theorem cannot be precisely characterized by Tur-
ing machines). Also we have NASH ∈ PPAD since Nash’s
proof (Nash et al. 1950) essentially gives a reduction from
NASH to BROUWER. Another more direct approach to prove
this result is to use Lemke-Howson algorithm (Lemke and
Howson 1964), which computes a Nash equilibrium for two-
player games by following a similar END OF THE LINE path.

PPAD-completeness results
We have defined a subclass of TFNP that contains NASH
and some other related fixed-point problems. If the trivial
complete problem END OF LINE can be reduced to these
problems in polynomial time, then a Nash equilibrium can
be found in polynomial time if and only if all the hard prob-
lems in PPAD mentioned above can be efficiently solved.
Therefore, Nash equilibrium is somewhat computationally
intractable.

The completeness result of NASH has been proved, and
such problem is PPAD-hard even in 2-player games:

Theorem 5 Finding MSNE in 2-player normal form games
are PPAD-complete (Chen and Deng 2006).

The detailed proof is quite complex and here
we omit it for simplicity. The main idea is to re-
duce 3-DIMENSIONAL BROUWER to 2-NASH, where
3-DIMENSIONAL BROUWER is proved to be PPAD-
complete. BROUWER’s completeness result is proved by
embedding the END OF LINE graph into a 3-dimensional
cube, which is used to define a continuous function with its
approximate fixed points corresponding to the unbalanced
nodes of the END OF LINE graph (Daskalakis, Goldberg,
and Papadimitriou 2009).

Besides Nash equilibria, we also have PPAD-hardness re-
sults for other kind of equilibria:



1. Arrow-Debreu equilibria (Chen, Paparas, and Yannakakis
2013): finding equilibria in markets with complements is
PPAD-hard;

2. Almost zero-sum games (Mehta 2014): finding equilibria
of a bimatrix game (A,B) with rank(A + B) ≥ 6 is
PPAD-hard (rank(A+B) = 0 corresponds to zero-sum
games);

3. Anonymous games (Chen, Durfee, and Orfanou 2015):
finding an approximate Nash equilibrium (with exponen-
tially small error) in an anonymous game is PPAD-hard;

Ways to overcome the intractability
Based on the hardness result we have shown, finding an effi-
cient algorithm that can in general compute Nash equilibria
seems hopeless. However, it does not mean that games in
real-worlds are wholly unpredictable and we cannot do any-
thing to deal with them. In fact, We can try to bypass the
computational intractability by some other methods.

Possible method 1: approximation
Sometimes an approximate result is enough for real-world
applications. So we may also be satisfied if approximate
equilibria are tractable. However, the following result shows
that relative-approximated Nash equilibria are also hard to
find:

Theorem 6 (approximation hardness of NASH) In a 2-
player games, finding a mixed strategy profile such that nei-
ther player can individually improve his current payoff by
more than an ε-fraction is PPAD-hard for some ε > 0
(Daskalakis 2013).

But for absolute error approximation, we know that the
problem is unlikely to be PPAD-hard, because there has al-
ready been an algorithm that can find ε-Nash of 2-player n-
strategy games in O(nlogn/ε

2

) time (Lipton, Markakis, and
Mehta 2003). However, a polynomial-time algorithm is still
missing.

Another positive example of approximation is anonymous
games. We have mentioned that exact equilibria are in-
tractable in anonymous games (Chen, Durfee, and Orfanou
2015). However, we can get arbitrarily good approximations
in polynomial time if the number of strategies does not scale
to infinity (Daskalakis, Kamath, and Tzamos 2015).

Possible method 2: games with special properties
Although finding MSNE in an arbitrary normal form game
is (believed) hard, we still have games with special prop-
erties that can be solved easily. For example, we can find a
MSNE in the 2-player zero-sum games efficiently by a linear
programming.

However, zero-sum games are not always simple if more
players are involved.

Theorem 7 k-player zero-sum games are PPAD-hard if
k ≥ 3.

Proof This result can be proved easily by reducing arbitrary
2-player games to 3-player zero-sum games. For any
2-player game, suppose that on any outcome σ, the payoff

of each player if u1(σ) and u2(σ). Then we add a third
player that has only one possible action, and the payoff
he receives is u3(σ) = −u1(σ) − u2(σ). Since the third
player has only one possible action, of course he has no
intention to deviate. So a MSNE in the 3-player zero-sum
game implies a MSNE in the original 2-player game, which
is PPAD-hard to compute.

In the proof we use some kind of 3-way interactions to
prove its hardness. By limiting such interactions, we can still
extend to a wider range of games with some good properties
of 2-player zero-sum games. For example, we have the fol-
lowing zero-sum polymatrix games:

Definition 8 (Zero-sum polymatrix games) (Cai et al.
2015)

A polymatrix game G consists of the following compo-
nents:

• a finite set of players V = {1, 2, . . . , n}, and a finite set
of strategies Si for each player i;

• a finite set of undirected edges E between players, and
for each edge [i, j] ∈ E a 2-player game (pij , pji) with
players i, j, strategy sets Si, Sj , and payoffs pij , pji re-
spectively (pij and pji are functions from Si × Sj toR);

• the payoff of player i is pi(s) =
∑

[i,j]∈E p
ij(si, sj) for

each strategy profile s = (s1, s2, . . . , sn) ∈
∏
j∈V Sj .

A polymatrix game G is zero-sum if for all s ∈
∏
j∈V Sj ,

we have
∑
i∈V pi(s) = 0.

This definition is just a multiplayer generalization of 2-
player zero-sum games such that the entire game can be de-
composed into several 2-player games (i.e., the edges E). In
other words, only 2-way interactions are allowed. In zero-
sum polymatrix games, we have the following properties
similar as 2-player zero-sum games:

1. A Nash equilibrium can be found in poly-time by a linear
programming.

2. The Nash equilibria form a convex set.

3. If each individual uses a no-regret learning algorithm, the
game converges to a Nash equilibrium.

Possible method 3: tractable alternatives of MSNE
Since Nash equilibria are computationally intractable, we
can try to find some other plausible definitions of equilibria
that are easier to compute. Correlated equilibrium is just an
example. In Nash equilibrium, we assume that the strategies
of the players are mutually independent. If we remove this
constraint, we get correlated equilibrium (intuitively, the
choice of players can be correlated after removing the inde-
pendence constraint). We can show that finding a correlated
equilibrium is tractable:

Theorem 9 The problem of finding a correlated equilibrium
is in P.

Proof Here we just give a simple sketch. The main idea is
that equilibrium conditions can now be expressed as linear



constraints on the joint action distribution. For each normal
form game, we maintain a variable for every pure strategy
profile denoting its probability in an equilibrium, and then
construct the equilibrium constraints on these variables and
solve it by linear programming. Since the game description
needs to give the payoffs of each pure strategy profile, the
linear program has polynomial size in the game description.

Correlated equilibrium is in P, while Nash equilibrium is
PPAD-hard. So we may sometimes use correlated equilib-
rium instead of Nash equilibrium as a credible prediction of
a game.
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