
A Survey on Dynamic Optimality

A Survey on the Dynamic Optimality

Yiding Zhang zhangyd19@mails.tsinghua.edu.cn
Institute for Interdisciplinary Information Sciences
Tsinghua University
Beijing, China

Abstract
Dynamic optimality is an area that focuses on whether there is a “best” binary search tree
(BST). In 1985, Sleator and Tarjan (1985) presented the dynamic optimality conjecture -
the running time of Splay, a self-adjusting BST, is within a constant factor of the optimal
offline BST on any sufficiently long sequence. In this survey, we present the progress in
dynamic optimality that have been made since the conjecture was put forward.
Keywords: binary search tree, Splay tree, Tango tree, dynamic optimality

1. Introduction
A binary search tree (BST) is a rooted binary tree that can represent an ordered se-

quence as its in-order traversal. This data structure can support insertion, deletion, and
query operations efficiently if we wisely adjust the tree structure by rotation, rebuilding, or
something else. In this survey, we focus on the problem that whether there is a “best” BST.
We first introduce some basic definitions related to dynamic optimality in this section, and
then some upper bounds will be shown in Section 2. After that, we will introduce a neat
geometric view of BST algorithms in Section 3, and then show some lower bound from this
view in Section 4.

1.1 Model of computation
To define what is a “best” BST, we first need to formally define the model of computation

- binary search tree model. In this model, data we need to maintain can only be stored as
keys of the nodes in the BST. Each node has a pointer to its parent (null if it is the root),
and a pointer to its left and right child respectively (null if it does not have such child).
This model requires that for each node, its left child must have a smaller key value, and its
right child must have a larger key value (suppose that keys are distinct).

The BST model supports the following unit-cost operations:

• Go to the left child.

• Go to the right child.

• Go to the parent.

• Rotate a node.

The model needs to support query operation search(x), which starts at the root of the
tree, uses the above operations arbitrarily, and touches the node with key value x at some
point.

1

Yiding Zhang

In addition, each node can store O(1) extra information (e.g., the color of each node
in a red-black tree), and the algorithm can determine what to do next according to the
extra information. Although there are BST algorithms that are not rotation-based (e.g.,
scapegoat trees), a series of rotations can change the structure of a BST arbitrarily, and
thus the model can also fit these algorithms.

1.2 Dynamic optimality

In the dynamic optimality problem, we consider only query operations (i.e., access the
node with the given key value), and ignore other operations like insertions and deletions
for convenience. Therefore, the operations we need to deal with are just a access sequence
X = q1, q2, . . . , qm that asks search(qi) in the i-th query. We define RA(X) as the total
running time of BST algorithm A on the access sequence X.

For any access sequence X, define OPT (X) as the minimum cost over all the offline
BST algorithms (i.e., operations can depend on future queries) executing on X. Then we
say that a BST algorithm A (of course an online algorithm) is dynamically optimal if
it performs as well as the best offline BST on any access sequence. More precisely, the
definition is as follows:

Definition 1 (dynamic optimality) We say that an online BST algorithm A is dynamically
optimal if for any access sequence X, we have RA(X) = O(OPT (X)).

For simplicity, in the following sections, we always suppose that elements are numbered
from 1 to n in increasing order, and the access sequence is X = q1, q2, . . . , qm.

2. Upper bounds better than O(log n)/op
In a BST consisting of n elements, the deepest element always has depth Ω(log n).

Therefore, O(log n) time per access is optimal in the worst case (since we can adaptively
choose the deepest element). Almost all of the self-balancing BSTs can achieve such worst-
case optimality. However, we can see that some access sequences are “easier” than others.
For example, accessing the same value m times only requires O(m) time. In fact, we have
upper bounds that are better than O(log n) per operation on some special access sequences
(although none of them are tight in general).

2.1 Dynamic finger bound

Intuitively, dynamic finger bound implies the spatial locality, i.e., an access can be fast
if its key value is close to the previous access. More precisely, A BST algorithm has the
dynamic finger property if the the (amortized) access time for qi is O(log(|qi − qi−1| + 1))
(+1 here is to avoid the log(0) case).

Dynamic finger property implies the sequential access property, which says that accessing
1, 2, . . . , n in order takes O(1) amortized time per operation. If we allow searching from the
last visited element, any BST can achieve this because an in-order traversal always takes
O(n) time. But it is a little hard to implement under BST model.

Now we present some BSTs with such property and some related applications.

2

A Survey on Dynamic Optimality

2.1.1 Splay

The dynamic finger property first appears as a conjecture in Sleator and Tarjan (1985).
The conjecture is that the total access time is

RSplay(X) = O(m+ n+

m∑
i=2

log(|qi − qi−1|+ 1)).

Sleator and Tarjan (1985) also presents the proof of an easier version called static finger
property:

Theorem 2 (static finger property) For any fixed element f , we have

RSplay(X) = O(n log n+m+

m∑
i=1

log(|qi − f |+ 1)).

Proof We assign the weight of i as wi = 1/(|i−f |+1)2, and then apply the potential anal-
ysis. Note that the total weight of the tree is

∑n
i=1 1/(|i− f |+1)2) ≤ 2

∑+∞
k=1 1/k

2 = O(1).
So the amortized cost of accessing i is 3(µ(S)− µ(i)) + 1 = O(log(|i− f |+ 1)). Note that
the net potential of the tree is at least

∑n
i=1 log(1/(|i− f |+1)2) = −2

∑n
i=1 log(|i− f |+1).

So the potential drop is bounded by O(n log n), and then we can get the total access time
O(n log n+m+

∑m
i=1 log(|qi − f |+ 1)).

The dynamic finger property is proved by [Cole et al. (2000)][Cole (2000)], but with a
higher initialization cost. The total access time is proved to be

RSplay(X) = O(m+ n log log n+
m∑
i=2

log(|qi − qi−1|+ 1)).

This is a very complicated proof of over 40 pages, and we will not go into details in this
survey.

2.1.2 Treap

In the BST model, searches must start from the root. If we remove this constraint and
allow searching from the last accessed element, Treap also has dynamic finger property.

Suppose that i is the last accessed element and j is the element we want to access now
(i is the root if j is the first element of the access sequence). We implement searchi(j)
(accessing j from i) in the following way: starting from i, going upward along the parent
link to the least common ancestor of i and j (this can be done by recording the range of
elements in each subtree), and then going to j. Now we prove that Treap has the dynamic
finger property:

Lemma 3 Each searchi(j) operation takes O(log(|j − i|+ 1)) time in a Treap.

Proof Suppose that the priority of parent node is higher in the Treap, and no two elements
have the same priority. Then y is an ancestor of x if and only if y has the highest priority
among the elements in [min{x, y},max{x, y}].

3

Yiding Zhang

W.l.o.g, suppose that i < j. Consider the expected length of the path P from i to
lca(i, j), which consists of elements that are ancestors of i but not ancestors of j. For each
element k (k ̸= i, j), there are three possible cases:

1. k < i: k ∈ P iff k has the highest priority in [k, i], and some element k′ ∈ (i, j] has
higher priority than k. So we have Pr[k ∈ P] = 1

i−k+1 − 1
j−k+1 .

2. i < k < j: k ∈ P iff k has the highest priority in [i, k], and some element k′ ∈ (k, j]
has higher priority than k. So we have Pr[k ∈ P] = 1

k−i+1 − 1
j−i+1 .

3. j < k: If k is the ancestor of i, then it is also the ancestor of j. So k ∈ P is impossible.

Then we can get

E[|P |] ≤ 2 +

i−1∑
k=1

(
1

i− k + 1
− 1

j − k + 1

)
+

j−1∑
k=i+1

(
1

k − i+ 1
− 1

j − i+ 1

)

= 2 +
i∑

k=2

1

k
+

(
j−i+1∑
k=2

1

k
−

j∑
k=2

1

k

)
+

j−i∑
k=2

1

k
− j − i− 1

j − i+ 1

= 2 +

j−i+1∑
k=2

1

k
+

j−i∑
k=2

1

k
−

j∑
k=i+1

1

k
− j − i− 1

j − i+ 1

≤ 2 +

j−i+1∑
k=2

1

k
+

j−i∑
k=2

1

k

= O(log(j − i+ 1))

Similarly we can get the expected length of the path from lca(i, j) to j. So the expected
running time is O(log(|j − i|+ 1)).

2.1.3 Application - merging BSTs

Now we consider the problem of merging two BSTs. Note that we do not guarantee that
the elements in one tree are all smaller than the elements in the other (in this case merging
can be done in O(log n) time by Splay or Treap).

BSTs do not intrinsicly support merging two trees quickly like some heaps (e.g., Fi-
bonacci heap). But we can implement merging in a heuristic way: inserting elements in
the smaller tree into the larger one. Suppose that we finally get a BST with n nodes after
some mergings. For each node, every time we insert it into another BST, the size of the
BST containing it is at least doubled. So each node is inserted O(log n) times, and thus the
total time complexity is O(n log2 n).

The time complexity of merging can be improved by dynamic finger property. We only
need to modify the heuristic algorithm a little bit: every time we merge two BSTs T1 and

4

A Survey on Dynamic Optimality

T2 with |T1| < |T2|, insert elements of T1 in increasing (or decreasing) order into T2.
Now we prove that this algorithm takes only O(n log n) time if we use BSTs with dynamic
finger property. Each time we merge two trees T1 and T2 with size n1, n2 (n1 < n2), the
time complexity (without the initialization cost) is

O

(
n1 +

n1∑
i=1

log(di + 1)

)
= O

(
n1 + n1 log

(
n1 + n2

n1

))
(note that the last step is due to the concavity of log function and Jensen’s inequality),
where di denotes the distance of the i-th and (i− 1)-th element of T1 in the resulting tree.
In such a merging operation, we count O(1+log((n1+n2)/n1)) on each node of T1. Suppose
that we finally get a tree with n nodes; for each element i, let s1 < s2 < · · · < sk = n be the
size of the trees after each insertion of i during the merging process. Then all the insertions
of i cost

O(

k∑
i=2

(1 + log(si/si−1))) = O(k + log(sk/s1)) = O(log n).

So the whole algorithm takes O(n log n) time. Note that the O(n log log n) initialization
cost can be ignored if we regard all these mergings as a whole process.

2.2 Working-set bound
The working-set bound says that searching an element that has been recently searched

can be fast. More precisely, each access qi requires only O(log(ti + 1)) time, where ti is the
number of distinct elements being accessed since the previous access of element qi (or since
the beginning of the sequence if qi is the first access of this element).

Sleator and Tarjan (1985) proves that Splay can satisfy this bound:

Theorem 4 (Working-set theorem of Splay)

RSplay(X) = O(m+ n log n+
m∑
i=1

log(ti + 1)).

Proof We can also prove this by setting the weight of each element properly. First, we
sort the elements in increasing order of their first access (put the elements that have never
been accessed at the end), and assign weight 1/i2 to the i-th element. Then after each
access, we permute the weights of elements in the following way: suppose the root (i.e.,
the element having been accessed) has weight k; we change the weight of the root to 1,
and assign the new weight 1/(k′ + 1)2 to each element with original weight 1/k′2 (k′ < k).
Note that the total weight is

∑n
i=1 1/i

2 = O(1). So each access operation has amortized
cost O(log(ti + 1)). Now we consider the amortized cost of permuting the weights. After
the permutation, we decrease the weight of some non-root elements, and only increase the
weight of the root. Since the potential of the root always equals to µ(S) = log(

∑n
i=1 1/i

2),
and the potential of other nodes can only decrease, the net potential can only drop or remain
unchanged. So the amortized cost of permuting is either negative or zero. After adding the
O(n log n) net potential drop, we get the total access time O(m+n log n+

∑m
i=1 log(ti+1)).

5

Yiding Zhang

2.2.1 Static optimality of Splay

The working-set property implies that if an element i appears f(i) times in the access
sequence, its average access time is bounded by O(log(m/f(i))) (we can prove this by the
working-set property and the concavity of log function). So we have the following entropy
bound:

Theorem 5 (entropy bound/static optimality theorem) Suppose that each element
i is accessed f(i) ≥ 1 times in the access sequence X. Then we have

RSplay(X) = O

(
m+

n∑
i=1

f(i) log

(
m

f(i)

))
.

The proof has been shown in class, and thus we just omit it. We call it entropy bound be-
cause the average accessing time of each element is O(−

∑n
i=1(f(i)/m) log(f(i)/m)), which

is Shannon’s entropy. Intuitively, Shannon’s entropy is the best result that can be achieved
by a static BST, and thus we call this property static optimality.

However, arguing that Shannon entropy represents the performance of the best static
BST seems not very easy. From the view of encoding, we can try to construct such an
optimal static BST that can meet this bound, just as what a Huffman tree does. But with
the constraint on the elements’ order in BST model, such a construction is not very easy to
find. Instead of showing the optimality through entropy, we can prove the static optimality
of Splay directly:

Theorem 6 For any access sequence S that access each element at least once, the running
time of Splay is O(OPTS(X)), where OPTS(X) is the running time of the optimal static
BST for X.

Proof Suppose that the depth of i in the optimal static BST is di. We assign the weight
of i as wi = 3−di . Since the number of vertices with depth d in a BST is at most 2d−1,
the total weight of the tree is always less than 1. So the amortized cost of accessing i is
3(µ(S)− µ(i)) + 1 = O(di). Then we consider the drop in potential. The total potential is
always greater than

∑n
i=1 log(3

−di) = − log(3)
∑n

i=1 di. So the drop in potential is bounded
by O(

∑n
i=1 di). If we assume that each element is accessed at least once, then the running

time of splay is O(
∑m

i=1 dqi) = O(OPTS(X)).

2.3 Unified bound
Unified bound is a combination of dynamic finger bound and working-set bound. It

implies both the dynamic finger bound and the working-set bound. The definition is as
follows:

Definition 7 (unified property) Suppose that ti,j is the number of distinct elements be-
tween access qi and qj. Then a BST has unified property if for each search qi, the running
time is bounded by

O(log(min
i′<i

{|qi − qi′ |+ ti′,i + 2})).

6

A Survey on Dynamic Optimality

Iacono (2001) proves that there exists a BST with unified property. So unified bound is
actually an upper bound for the optimal BST.

Whether Splay has the unified property is still open. We even have not found a BST
with unified property, and the best BST known is Skip-Splay(Derryberry and Sleator (2009))
that requires O(m log log n+ UB(X)) running time.

3. A geometric view of BSTs
Given an access sequence X, how can we get OPT (X)? This problem seems hard

to study if we directly consider all possible rotation-based BSTs. Demaine et al. (2009)
presents a geometric view that makes this problem easier to study by showing a connection
between BSTs and points on the plane satisfying a simple property.

3.1 Equivalent representation of BST algorithms
For any access sequence X = q1, q2, . . . , qm, we can represent it as SX = {(qi, i) | 1 ≤

i ≤ m}, which is a set of points with x-axis being the space and y-axis being the time. For
any BST algorithm A executing on X, let tA(i) be all the nodes touched when we execute
search(qi), and we can know that the cost of this query is Θ(|tA(i)|). Then define the set of
points SA

X = {(x, i) | x ∈ tA(i)}. Note that we must have SX ⊆ SA
X due to the correctness

of algorithm A. Then the running time of A satisfies RA(X) = Θ(|SA
X |).

Figure 1: An example of SX and SA
X with X = 2, 4, 1, 3 and A be the corresponding algo-

rithm of the static BST shown on the left.

Now we try to find a BST algorithm on X by directly finding a superset of SX . We
will see that SX ⊆ S corresponds to a BST algorithm iff S is arborally satisfied. The
definition is as follows:

Definition 8 (arborally satisfied) For any point set S, we say that S is arborally satis-
fied (AS for simplicity) if for all pair of points p, q ∈ S that do not share the same x or y
coordinate, there is a third point r ∈ S inside or on the boundary of the rectangle spanned
by p, q (i.e., the rectangle with pq as the diagonal and with edges parallel to the axis).

With this definition, we have the following theorem:

7

Yiding Zhang

Theorem 9 S = SA
X for some BST algorithm A iff S is an arborally satisfied superset

(ASS for simplicity) of SX .

This theorem directly implies that OPT (X) = Θ(minASS(X)). Now we have changed
the problem of finding the optimal BST over X into the problem of finding minASS(X),
which seems easier to study.

3.2 Greedy algorithm

The geometric view of BSTs tells us that if we can find an O(1) approximation online
arborally satisfied algorithm, then we have a BST algorithm with dynamic optimality. Note
that we have a simple greedy algorithm for ASS: consider all points in SX row by row, then
add any points into the current row that would be necessary to make the current subset of
SX arborally satisfied. This algorithm is conjectured to be dynamically optimal in Demaine
et al. (2009).

Figure 2: Result of the greedy algorithm on X = 2, 4, 1, 3.

4. Lower bounds for OPT (X)

There are also non-trivial lower bounds on OPT (X) for a given access sequence X. In
this section, we present some of these lower bounds and their applications.

4.1 Independent rectangle bounds

The independent rectangle bound by Demaine et al. (2009) is the best known bound on
OPT (X). The basic idea is to count the maximum number of independent rectangles in
SX .

Definition 10 (independent rectangles) A pair of rectangles spanned by ab and cd are
called independent if the rectangles

1. are not arborally satisfied;

2. no corner of either rectangle is strictly inside of the other rectangle.

8

A Survey on Dynamic Optimality

We say that a set of rectangles are independent if any two rectangles in this set pairwisely
independent.

Figure 3: Examples of independent rectangles

Let IRB(S) be the size of the maximum set of independent rectangles on S. We have
OPT (X) = Ω(IRB(SX)) due to the following theorem:

Theorem 11 Given a set of points S, we have minASS(S) ≥ |S|+ 1
2IRB(S).

Proof According to Lemma 12 that we will show in 4.1.1, we have

minASS(S) ≥ max{minASS+(S),minASS−(S)}
≥ |S|+max{IRB+(S), IRB−(S)}

≥ |S|+ 1

2
(IRB+(S) + IRB−(S))

≥ |S|+ 1

2
IRB(S).

In the following subsection, we will show that IRB(S) can be estimated within a con-
stant factor by a simple greedy algorithm.

4.1.1 Signed greedy algorithm

Note that the rectangles spanned by two points ab can be separated into two types
according to whether the diagonal ab looks like “/” or “\”. More precisely, a rectangle ab
(suppose that a.x < b.x) belongs to one of the following two types:

1. +type: if a.y < b.y;

2. −type: if a.y > b.y.

Define IRB+(S) (IRB−(S)) as the size of the maximum set of independet +type
(−type) rectangles on the point set S. Similarly we can define minASS+(S) and minASS−(S)
as the minimum arborally satisfied superset considering only one type of rectangles. Since
+type and −type are wholly symmetric, we only consider +type in the following discussion.

9

Yiding Zhang

We will see that IRB+(S) and minASS+(S) can be calculated easily by the signed greedy
algorithm, which is just a variation of the greedy algorithm in section 3.2 that considers
only +type rectangles:

First, we have the following lemma:

Lemma 12 minASS+(S) ≥ |S|+ IRB+(S).

Proof The geometric proof is not very related to our topic, so we just omit it. Details of
the proof is shown in Demaine et al. (2009).

Then, we can show that newly added points in the signed greedy algorithm correspond
to a set of independent +type rectangles (see Demaine et al. (2009)). Then let Greedy+(S)
be the result of the signed greedy algorithm, and we can get

Greedy+(S) ≥ minASS+(S) ≥ |S|+ IRB+(S) ≥ Greedy+(S).

This leads to the result that Greedy+(S) = minASS+(S). Note that calculating
minASS(S) is shown to be NP-complete by Demaine et al. (2009), but calculating minASS+(S)
and minASS−(S) is surprisingly easy. With the signed greedy algorithm, we can efficiently
estimate IRB(S) = Θ(IRB+(S) + IRB−(S)).

4.2 Wilber’s first lower bound [Wilber (1989)]
Wilber’s first bound (or alternation bound) gives a lower bound for OPT (X) by counting

the number of alternations on a static BST. For a given access sequence X and an arbitrary
static BST T , let ALT (u) (u ∈ T) be the number of alternations between accesses of u’s
left and right subtree on the subsequence of X without y and elements outside y. Then we
have

OPT (X) = Ω(
∑
u∈T

ALT (u)).

We can prove this bound from the geometric view, by showing that all these alternations
correspond to a set of independent rectangles.

4.2.1 Example: bit-reversal sequence

Suppose that n = 2k and the elements are 0, 1, . . . , n− 1. Now consider the bit-reversal
sequence, i.e., reverse the digits (in binary) of each number in the sequence 0, 1, 2, . . . , 2k.
For example, the sequence is

0, 8, 4, 12, 2, 10, 6, 14, 1, 9, 5, 13, 3, 11, 7, 15

for k = 4. We will show that any BST requires Ω(n log n) time on this kind of access
sequence.

Consider the perfect binary sarch tree. For any node, the bit-reversal sequence visits
its two subtrees alternatively. So each node reaches the maximum number of possible al-
ternations. According to Wilber’s first lower bound, any BST algorithm requires Ω(n log n)
time, and thus we get a tight bound Θ(n log n) for the bit-reversal sequence.

10

A Survey on Dynamic Optimality

4.2.2 Application: Tango tree

Tango tree (Demaine et al. (2007)) is a online BST algorithm that runs in a O(log log n)
factor within Wilber’s first lower bound, and thus it is O(log log n) competitive to the
offline optimal BST. Tango tree is the first known BST that has a nontrivial O(log log n)
approximation factor, and is the BST closest to dynamic optimality now.

Tango tree maintains a structure that is similar to link-cut trees (LCT). The algorithm
starts with a balanced BST with depth ⌋ log n⌋, maintains the preferred child of each node,
and decomposes the BST into several paths according to the preferred child. Similarly
as a LCT, we maintain each path by a self-adjusting BST (e.g., Splay). The key idea of
Tango tree is that every time Wilber’s first lower bound increases by 1 (i.e., an alternation
happens), we change the preferred child of the corresponding node with a cost O(log log n)
(since the size of each path is O(log n), BST operations require only O(log log n)). Therefore,
we get an O(log log n) approximation. This structure can be maintained in a BST model
by recording extra information at the positions we change from one path to another.

Note that Tango tree also implies that Wilber’s first lower bound is close to OPT (X)
within a factor of O(log log n).

Acknowledgement
Great thanks to the MIT 6.851 Lecture 5& 6 for introducing the big picture of dynamic

optimality. Also thanks Weijuan Dong’s IOI-2018 national training team paper for the
introduction of finger search.

11

Yiding Zhang

References
Richard Cole. On the dynamic finger conjecture for splay trees. part ii: The proof. SIAM

Journal on Computing, 30(1):44–85, 2000.

Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On the dynamic finger
conjecture for splay trees. part i: Splay sorting log n-block sequences. SIAM Journal on
Computing, 30(1):1–43, 2000.

Erik D Demaine, Dion Harmon, John Iacono, and Mihai P a ˇ traşcu. Dynamic optimality—
almost. SIAM Journal on Computing, 37(1):240–251, 2007.

Erik D Demaine, Dion Harmon, John Iacono, Daniel Kane, and Mihai Patraşcu. The
geometry of binary search trees. In Proceedings of the twentieth annual ACM-SIAM
symposium on Discrete algorithms, pages 496–505. SIAM, 2009.

Jonathan C Derryberry and Daniel D Sleator. Skip-splay: Toward achieving the unified
bound in the bst model. In Workshop on Algorithms and Data Structures, pages 194–205.
Springer, 2009.

John Iacono. Alternatives to splay trees with o (log n) worst-case access times. In Proceed-
ings of the twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 516–522,
2001.

John Iacono. In pursuit of the dynamic optimality conjecture. In Space-Efficient Data
Structures, Streams, and Algorithms, pages 236–250. Springer, 2013.

Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Jour-
nal of the ACM (JACM), 32(3):652–686, 1985.

Robert Wilber. Lower bounds for accessing binary search trees with rotations. SIAM journal
on Computing, 18(1):56–67, 1989.

12

	Introduction
	Model of computation
	Dynamic optimality

	Upper bounds better than O(logn)/op
	Dynamic finger bound
	Splay
	Treap
	Application - merging BSTs

	Working-set bound
	Static optimality of Splay

	Unified bound

	A geometric view of BSTs
	Equivalent representation of BST algorithms
	Greedy algorithm

	Lower bounds for OPT(X)
	Independent rectangle bounds
	Signed greedy algorithm

	Wilber's first lower bound [wilber]
	Example: bit-reversal sequence
	Application: Tango tree

