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Abstract

We study the hardness of sequence alignment problem in the context of data structure lower
bounds. In particular, the problem is given a database of many sequences, and on each query
sequence, find the sequence from the database that best aligns to the query. This characterizes
the task of finding similar species from a huge biological database. We show that assuming
Orthogonal Vectors Conjecture in fine-grained complexity, even approximately finding the op-
timal answer is very hard, in the sense that there could not be a data structure that simultane-
ously achieves poly(1) space and n'~¢ query time, where 7 is the length of the database. This
means that essentially we need to enumerate over the whole database to get the answer.

1 Introduction

Sequence alignment problem asks to find an “alignment” of two DNA sequences so that as much
as essential pieces are matched together. Besides revealing the common genes of the two species, it
also characterizes the similarity between them. As a result, sequence alignment is a fundamental
problem in computational biology, not only serves as the starting point of analyzing the difference
between species, but is used to find similar species from a database for an unknown new specimen
as well.

In this note, we mainly consider the problem of finding similar sequences from a huge database,
which is required for the second application. Informally, we are given a database of sequences of
hundreds of millions of species, and given a query, we are asked to find the sequence that best
aligns to this query. We measure the goodness of an alignment via edit distance, i.e., the mini-
mum number of insertions, deletions, and modifications to make the sequences equals. We note
that there are many other measures (such as a penalty matrix for different types of misses), but
they are in general more complicated to edit distance measure, and hence harder to solve. Since
we are interested in hardness results, this is not a problem. One can refer to Definition 3.2 for a
formal definition of the problem.

Sequence alignment Given a database of nn sequences, each of length at most d, build a data struc-
ture that, on a query sequence of length d, find the sequence with minimum edit distance
from the given n sequences in the database.
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To make the data structure problem interesting, we assume d < n, since the database is re-
quired to be much bigger than the query length to make preprocessing nontrivial. And this is
indeed most of the case in practice, since we usually have a super large database of lots of species,
but the query sequence is only a particular segment from one sequence. For the rest of introduc-
tion we assume d = polylogn for simplicity.

There are two obvious ways of solving this problem. In one hand, we can do nothing at prepro-
cessing stage, and answer queries by enumerating over the whole database and find the nearest
sequence. This data structure takes O(n) space but O(nd?) query time. On the other hand, we
can preprocess and store the answer of all possible queries in advance, and answer all queries due
to the preprocessed answer. This results in a data structure with constant query time but O(24)
space, which is super-polynomial to # as long as d = w(log n). Both these data structures are inef-
ticient since they either requires super-polynomial amount of space, or requires super-polynomial
time to answer the queries.

For years, people tried to find faster data structures for this problem, but we are still not able
to improve either of the two trivial solutions significantly. So we are still quite far from the ideal
solution of poly(n) space and poly(d) query time. In practice, we have some good heuristic algo-
rithms such as BLAST [AGMML90], but none of them can have guarantees on the optimality of
the result. Hence, it is natural to think of the possibility that such data structures would not exist.

1.1 Owur results

We study the essence of why people are not able to give more efficient data structures, and show
evidence that these data structures might not exist. In particular, based on well-formed assump-
tions in fine-grained complexity, such as SETH or OV conjecture (see Section 2.1 for introduction
on these conjectures), we are able to show that even finding a result close to optimal does not ad-
mit an efficient data structures. In fact, even a data structure slightly more efficient than the trivial
ones described above could not exist. We give an state our main theorem here, and will prove it in
Section 3. One may also refer to the beginning of Section 3 for a rigorous definition of approximate
sequence alignment problem.

Theorem 1.1 (Main theorem). There exists a sufficiently small constant e > 0 such that the follow-
ing holds. Assuming SETH or OV conjecture, sequence alignment problem with approximation
ratio (1 + ¢€) cannot be solved by a data structure of polynomial size and n%% query time. %

Essentially, conditioned on widely believed assumptions, this means that even finding a near-
optimal result would be very hard, so we should not expect to find more efficient algorithm, or
prove the correctness of the heuristic algorithms. This also shed lights towards proving uncondi-
tional lower bounds for this data structure problem, giving known results in data structure lower
bounds (see, e.g., [Yin16]).

1.2 Related works

1.2.1 Complexity of pairwise sequence alignment

Besides formalizing sequence alignment as a data structure problem, pairwise sequence alignment
is also important since it can be used to find similar pieces of two sequences. Hence finding a fast
algorithm has been of great interest in the past forty years [MP80; SW81; CLZ03; BF08; AWY15].
Although there is a straight-forward algorithm running in time O(n?) using dynamic program-
ming, so this problem is already known to be in P, we still hope the algorithm to run as fast as
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possible. However, despite plenty of research, we are still not able to get a provably correct algo-
rithm running in O(n'%??) time. Indeed, the fastest algorithm currently is developed by Abboud,
Williams, and Yu [AWY15] building on the all-pair shortest path algorithm by Williams [Wil18],
and it runs in O(n?/ exp(Q(y/logn))) time.

Recently, Backurs and Indyk [BI18] showed that assuming SETH, pairwise sequence alignment
problem cannot be solved by an algorithm of truly sub-quadratic time (i.e., O(n*>~¢) time for some
g > 0). This complements the line of works on algorithm design for this problem, and showed the
inherent difficulty in improving known algorithms.

1.2.2 Hardness of data structures from fine-grained complexity

Prior to our work, Chen and Williams [CW19] studied the hardness of many data structure prob-
lems based on the conjectures in fine-grained complexity. In particular, they proved that the fol-
lowing three problems are equivalent in the existence of a polynomial space and O(n%%°) query
time data structure.

Online OV Given a database of 1 vectors in IF§, for each query of another vector, decides whether
there exists a vector in the database orthogonal to it.

Partial Match Given a database of n strings over alphabet {0,1, x}, each of length d. For each
query of length-d string over alphabet {0,1}, decides whether there exists a string in the
database that matches to it, where % can be matched arbitrarily to 0 or 1.

Onelin Max-IP Given a database of n vectors in {0, 1}d, for each query of another vector, find the
vector in the database with maximum inner product with it.

Approximate NNS Given a database of n vector in RY, for each query of another vector, find a
vector in the database with almost minimum ¢; distance to the query vector.

We note that the online OV is actually the online version of the classical OV problem, and
indeed does not admit such data structures if OV conjecture holds. Hence, all the above problems
do not have efficient data structures assuming fine-grained conjectures.

2 Preliminaries

2.1 Fine-grained conjectures

We begin by giving a brief introduction to fine-grained complexity, and the conjectures used in
this note. Fine-grained complexity is a recently developed line of work aiming at capturing the
hardness of problems already in P. A typical example is the orthogonal vector problem (OV), that
asks to find an orthogonal pair from a set of vectors. Suppose that the input set has n vectors
of dimension d, where d < n (a typical setting is d = clogn), enumerating over all pairs of
vectors requires O(n%d) time. However, improving this algorithm even non-trivially has been an
appealing open problem for decades. Indeed, we are still not able to obtain a truly subquadratic
algorithm (e.g., O(n'*poly(d) time algorithm), despite great efforts. Hence, some researchers
believe that this problem is inherently not solvable in truly subquadratic time.

Conjecture 2.1 (OV conjecture). There does not exist constant € > 0 such that orthogonal vector
problem with d = n°() can be solved in O(n?~¢) time. O



Using truly subquadratic reduction, Erickson [Eri95] showed many interesting problem to be
OV-hard, in the sense that if OV conjecture breaks, then they have O(n?~¢) algorithms as well.
Such results give evidence that OV conjecture is true, since breaking it would imply significantly
better algorithms for many problems, all of which are actively studied for years.

Another central problem considered is CNF-SAT, which asks whether a formula in conjunctive
normal form has satisfying assignments. The famous Strong Exponential Time Hypothesis (SETH)
asserts the non-existence of 2(179" time CNF-SAT algorithm on 1 variables for any ¢ > 0. The
folklore reduction from CNF-SAT to OV also put evidence that OV conjecture is true.

Theorem 2.2 (see, e.g., [WY14]). If strong exponential time hypothesis is true, then OV conjecture
is true as well. O

Still, it is worth mentioning the skepticism of SETH. Recently, some results showed that some
stronger versions of SETH are false (see, e.g., [Wil16], [VW21]), so the likelihood of SETH is some-
times doubted. Nevertheless, OV conjecture is weaker than SETH, and it seems plausible that OV
conjecture is true but SETH is false. One may refer to [Wil18] for more discussion.

2.2 Formalization of data structure problems

We now formally define the data structure problems discussed in this note. Generally, a data
structure problem has a database D as input, and preprocessing algorithm is required to generate
a data structure. Then on any query g, we need an algorithm to compute the answer of this query
based on the data structure built.

Definition 2.3. For n,d € IN, we define the following data structure problems:

Online OV Given a database D of n points in {0, 1}, preprocess a data structure of these given
points such that, for all query of the form g € {0, 1}¢, either report a point x € D that satisfies
(x,q) = 0, or report that no such x exists.

Approximate /,-NNS Given a database D of n points in IR?, preprocess a data structure of these
pp p p prep
given points such that, for all query of the form g € RY, report a point x € D that satisfies
lx —qllp, < (1+¢€) - minep ||y — qlp- Here (1 +¢) is called the approximation ratio. &

For data structure problems, the database is usually extremely large compared to the query
length, so it is a reasonable to assume that d = n°(1), similar to the OV conjecture. Trivial algo-
rithms for these problems require either exp(d) space to store the answer of all possible queries in
advance or O(npoly(d)) to scan the whole database when answering a query. Chen and Williams
[CW19] proved that these two problems are equivalently hard, if we want a better algorithm.

Theorem 2.4 ((CW19], Theorem 7.1). The following are equivalent.

1. There is a 6 > 0 such that for all constant ¢, there is a data structure for Online OV with
d = clogn uses poly(n) space and allows 1!~ query time.

2. For some constant p € [1,2], there is a § > 0 such that for all ¢ > 0, there is a data structure
for approximate ¢,-NNS with approximation ratio (1 + ¢) uses poly () space and allows n! =%
query time.

Moreover, assuming OV conjecture, both algorithms above do not exist. &



2.3 Locality-sensitive hashing

Locality-sensitive hashing (LSH) is a useful technique for approximate NNS, and we will use it in
our main reduction. The formal definition is shown below.

Definition 2.5 (Locality-sensitive hashing). For a family H of functions h : X — &, we say that
Hisa (R,cR, p1, p2)-LSH iff

1. forall x,y € X with ||x — y|| < R, we have Py, 4[h(x) = h(y)] > p1, and
2. forall x,y € X with ||x — y|| > ¢R, we have Prj._ 4 [h(x) = h(y)] < p2

where R >0,¢ > 1,0 < p, < p1 <1,and | - || is any kind of distance measure. &

Known results have shown that there exists locality-sensitive hashing for commonly used dis-
tance measures like £, distance.

Lemma 2.6 ([DIIM04], see also [CW19]). For any constant p € [1,2], for any real number R > 0,
e € (0,0.1), there exists a (R, (1 +¢) - R, p1, p2)-LSH under ¢, distance such that p; — p» = Q(e).<&

3 Proof of the main theorem

In this section, we prove that problem of finding a sequence from a database that best matches the
query sequence is OV-hard, even in the approximating case. We first formally define the sequence
alignment problem as nearest neighbor search over edit distance.

Definition 3.1 (Edit distance). Let 0 < a < 2. For two strings S and T, we allow the following
two operations.

¢ Insert a character into S or T with cost 1.
* Modify a character in S or T with cost a.

We define the a-edit distance of S and T, denoted by ED, (S, T), to be the minimum cost to make S
and T equal. ¢

We note that when a > 2, the definition would be meaningless since we can use two insertions
to simulate a modification. So we assume for simplicity that « < 2.

Definition 3.2 (Sequence alignment, or NNS over a-edit distance). Let X be an alphabet of con-
stant size. Given a database D of n sequences of length d over ¥, preprocess a data structure such
that, for all query g of length-d sequences over alphabet %, report a sequence x € D with minimum
n-edit distance with g. &

Since we are also interested in the hardness of approximation, we also need the approximate
version of this problem.

Definition 3.3 (Approximate NNS over a-edit distance). Let X be an alphabet of constant size.
Given a database D of n sequences of length d over X, preprocess a data structure such that,
for all query g of length-d sequences over alphabet X, report a sequence x € D that satisfies
EDu(g,x) < (1+4¢) - minyep EDy(q,y). Here (1 + ¢) is called the approximation ratio. &



To prove the OV-hardness of approximate NNS over edit distance, we show an reduction from
approximate NNS in ¢; space. Theorem 1.1 then directly follows from Theorem 2.4 this reduction.

Theorem 3.4. Assume that there exist «, 5 > 0 such that for all € > 0, there exists a data structure
for approximate NNS over a-edit distance with approximation ratio (1 + ¢), poly(n) space, and
n'=% query time. Then there exists &' > 0 such that for all ¢ > 0, there is a data structure for
approximate £1-NNS with approximation ratio (1 + €’), poly(1) space, and n' =% query time. ¢

The rest of this section is devoted to proving this theorem. We first reduce the standard NNS
to NNS in IF,, then reduce the later to the edit distance case.

3.1 From /{-NNS to [F,-NNS

We first define an intermediate problem in order to make the underlying field discrete. That is, we
define the IF>-NNS to be similar to the nearest neighbor search, but instead of taking ¢; distance in
R, we take the Hamming distance in the Boolean cube {0, 1}4.

Definition 3.5 (Approximate IF,-NNS). Given a database D of n points in {0,1}“, preprocess a
data structure of these given points such that, for all query of the form g € {0,1}¢, report a point
x € D that satisfies ||x — gl[o < (1+¢) - minycp ||y — g[o. Here (1 + ¢) is called the approximation
ratio. ¢

Then we can show that F,-NNS is as hard as the original problem.

Lemma 3.6. Assume that there is a 6 > 0 such that for all ¢ > 0, there exists a data structure that
can approximate IF,-NNS with (1 + &) approximation ratio, poly(n) space, and n'~% query time.
Then there is a &' > 0 such that for all ¢ > 0, we can construct a data structure for approximate
£1-NNS with (1 + ¢') approximation ratio, poly(11) space, and n' =% query time. &

Proof. The proof can be done in almost the same way as the reduction from [CW19].

First, we can “discretize” the £;-NNS problem into the following version: given R = (1 + ¢/3)*
for some k € Z, construct a data structure D for the given n points in R? such that for each
query g € R?, reports a point x € D satisfying [|x — q|l1 < (1+¢/3) - R if mineep ||x — g|1 < R,
and reports a failure if min,ep [|[x — ¢g||1 > R (note that its behavior can be arbitrary if neither
case holds). We can see that if there is a sublinear algorithm for this version of problem, we
can solve the original /;-NNS in sublinear query time by enumerating k € Z and running the
algorithm with R = (1 + &/3)* until a point is reported. When we get to the smallest k such that
(1+¢/3)F > min,ep ||x — g1, the algorithm reports a point x € RY with distance ||x — q||; <
(14+¢/3)-R < (1+4¢/3)? - mingep ||x — q|l1 < (1+¢) -mingep ||x — gl

Then we reduce the modified version to Fo-NNS by applying LSH. Let # be a family of (R, (1 +
e/3) - R, p1, p2)-LSH. Then we construct a mapping from R? to F§ in the following way (d’ will be
determined later):

1. Independently sample d’ functions hy, hy, ..., hy from H.

2. Independently sample d' random mappings ¢1, ¢, . . ., ¢4 from Range(H ) to {0,1} (i.e., map
each element in Range(#) independently to 0 or 1).

3. Let the mapping be ¢ : RY — F4, where the i-th bit is g;(x) = ¢;(h:(x)).

Consider two points x,y € R%. By the definition of LSH, for any i € [d'], we have
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L Prlgi(x) =&i(y)] =2 p1+ (1 —p1)/2=1/2+ p1/2if [|[x —y[l <R
2. Prgi(x) = &i()] < p2+ (1 —p2)/2=1/24p2/2if |x —yl1 = (14+¢/3) - R.

So we can set d’ = clogn for some constant c. Then from Chernoff bound, we know that for any
0<d< (pl —pz)/z,

L Prllg(x) —gW)llo < 5 — 3(p1 = 9)] 2 1 =220 if ||lx — y; < R.

2. Pr(lg(x) —g)llo > 3 — 3(p2+0)] > 1220V if |x —y|}y > (1+¢/3) - R.
1/2—(pp+0)/2 __
1/2—(p1-90)/2 —

1+F i:Zi;;J, we can solve ¢1-NNS with approximation ratio 1 + € and sublinear query time. [

Therefore, if we have a sublinear algorithm for F,-NNS with approximation ratio

3.2 From [F,-NNS to NNS over edit distance
We now reduce [F>-NNS to our sequence alignment problem, which completes our proof.

Lemma 3.7. Assume that there exist &, > 0 such that for all ¢ > 0, there exists a data structure for
approximate NNS over a-edit distance with approximation ratio (1 + ), poly(n) space, and n'~?
query time. Then there is a ¢’ > 0 such that for all ¢ > 0, there exists a data structure that can
approximate IFo-NNS with (1 + ¢’) approximation ratio, poly(n) space, and n!~% query time. <

Proof. Let the dimension of IF5-NNS be d (note that d = n° (1)). Then for each x € {0, 1}d, we pad
it into a string in {0,1,#}% by adding [« - (d + 1)] #'s between each pair of adjacent characters.
Thus we still have d = d + (d — 1) - [a- (d +1)] = n°(). Note that after the padding, each inser-
tion/deletion of 0, 1 causes a cascade of adjacent #'s required to be inserted /deleted for alignment,
and the total cost has exceeded the cost of modifying the whole sequence. Therefore, the edit dis-
tance between any two padded strings does not change if we forbid insertion and deletion, and
it turns into the £y distance between original strings in {0,1}“ as a result. Above all, if we can

find a sublinear solution for a-edit distance, we can also find a sublinear solution for approximate
IF-NNS. O
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